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Zero-Knowledge Proof Systems: Informal Definition

Very informally, a zero-knowledge proof system is an interactive
protocol between two parties, a prover and a verifier, in which:

Both parties have in input a proposition (that is true/false).

I e.g. a graph G and ”G is 3-colorable”, or

N, r > 0 and ”there is an integer x s.t. x2 mod N = r”.

1 If the proposition is true, then then prover can prove to the

verifier that the proposition is true (completeness)

2 If the proposition is false, then then prover cannot cheat the

verifier that the proposition is true (soundness)

3 without revealing any additional information beyond the truth

of the proposition (zero-knowledge)

I i.e. verifier alone cannot still prove the proposition
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(Algorithmic) Problems vs. Propositions vs. Languages

Algorithmic problems (decision version)

f : X → {T, F}

I e.g. fGI (G1,G2) =

{
T if graphs G1 and G2 are isomorphic

F otherwise
I c.f. certificate, witness, proof

Propositions

input instances of the decision-version of the ATP problem
I f (proposition) =

T if provable from ZFC (i.e. true in all models of ZFC)

F if disprovable from ZFC (i.e. false in all models of ZFC)

? if independent from ZFC

Languages (history of computation DFA/NFA/PDA/TM..)

L = f −1(T) encoded with 0/1s (i.e. L ⊆ {0, 1}∗)
I e.g. LGI = {(G1,G2) | graphs G1 and G2 are isomorphic}
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(Algorithmic) Problems vs. Languages

Let f : X → {T, F} be an algorithmic problem where X is infinite.

모든 x ∈ X의 크기는 유한해야 하므로 X는 countable set

따라서, 임의의 bijection φ : X → {0, 1}∗을 이용하여 f를

binary encoding 할 수 있다

L = φ
(
f −1(T )

)
⊆ {0, 1}∗ 로 두면

x ∈ L ⇐⇒ f
(
φ−1(x)

)
= T

x /∈ L ⇐⇒ f
(
φ−1(x)

)
= F

임의의 bijection φ, φ′ ∈ X→{0, 1}∗에 대해 φ, φ′가 poly-time

computable이면 φ(x) 7→ φ′(x), φ′(x) 7→ φ(x) mapping도

즉, 어떤 encoding을 사용해도 계산복잡도 측면에서 무관

(i.e. L = φ
(
f −1(T )

)
와 L′ = φ′

(
f −1(T )

)
는 isomorphic)

L ∈ 2{0,1}
∗
므로 f ∈ 2{0,1}

∗
로 취급할 수 있고, problem과

(isomorphic) language간은 섞어서 사용
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Interactive Turing Machines

Definition (Interactive Turing Machine (ITM))

M(x ,m) 형태의 TM (보조입력 z가 추가될 수도 있음)

x는 아래에서 common input, m은 상대 TM의 output

Internal state variable도 가질 수 있음 (즉, pure function 아님)

may be randomized (with random number generator for coin-toss)

Definition (Interactive Computation of two ITMs)

Given two ITMs P,V and common input x , the result of the
interactive computation, written 〈P,V 〉(x), is the return value of

mv := ε
while mv /∈ {”T”, ”F”} # "accept"/"reject"

mp := P(x ,mv )
mv := V (x ,mp)

return mv

If P,V are randomized, then 〈P,V 〉(x) is a random variable
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Interactive Proof Systems

Fix a language L ∈ 2{0,1}
∗

Definition (Interactive Proof System)

An interactive proof system for L is a pair of two ITMs (P,V ) s.t.

∀x ∈ L, Pr
[
〈P,V 〉(x) = ”T”

]
= 1 (completeness)

I P,V가 randomized인 것을 허용하여서 확률적으로 정의
I . . . = 1을 . . . = 1−ε(|x |)로 relax할 수도 있음

∀P∗ ∀x /∈ L, Pr
[
〈P∗,V 〉(x) = ”F”

]
≥ 1−ε(|x |) (soundness)

I where 0 ≤ ε(|x |) < 1/p(|x |) for every polynomial function p(·)
I 위와 달리 모든 가능한 (prover) P∗에 대해 성립해야 함
I (Fake prover도 ε(|x |)만큼은 속일 수 있어서) 1− ε(|x |)로

V is a (probabilistic) polynomial-time TM

I whereas no time-bound placed on P (may be exp-time TM)

Such P is called a prover, and V a verifier

Interactive Proof ∧ Zero-Knowledge = Zero-Knowledge Proof
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Interactive Proof Systems: Trivial Cases (1/2)

Every language L ∈ P has an interactive proof system

Let AL be any poly-t. algorithm for (problem ≡ language) L

Let V (x ,m) = AL(x) (just ignore m)

Then, for any ITM P, (P,V ) is an interactive proof system

I completeness, soundness, deterministic poly-time

In the same say, every language in BPP also has an interactive
proof system
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Interactive Proof Systems: Trivial Cases (2/2)

Every language in L ∈ NP has an interactive proof

Let CL be any poly-time certifier for L

I i.e. for each x ∈ L, there is (certifier/proof) y s.t. CL(x , y) = T

I i.e. for each x ∈ L, there is no y s.t. CL(x , y) = T

Let P(x ,m) =

(proof) y s.t. CL(x , y) = T if x ∈ L

None otherwise

I recall: prover P는 exp-time에 수행되는 것이 허용됨

Let V (x ,m) = CL(x ,m) (i.e. just check if indeed a proof!)

Then, (P,V ) is an interactive proof system

I complete: x ∈ L면 V (x ,P(x , ·)) = CL(x , proof of x) = T

I sound: x /∈ L면 V (x ,P∗(x , ·)) = F for all P∗ (x has no proof)

I poly-time verifier: V = CL is a poly-time TM

The above (P,V ) is not a zero-knowledge proof system (stay tuned)
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The Class IP

Definition (IP)

IP , {L ∈ 2{0,1}
∗ | L has an interactive proof system}

I not the languages with zero-knowledge proof systems

BPP ∪NP ⊆ IP
I Remind: it is not known whether or not BPP ⊆ NP

Theorem (Shamir, 1992)

IP = PSPACE



Interactive Proof Systems IPS: Examples ZKP Commitment Schemes ZKP for NP Proofs of Knowledge Applications

Outline

1 Interactive Proof Systems

2 IPS: Examples

3 ZKP

4 Commitment Schemes

5 ZKP for NP

6 Proofs of Knowledge

7 Applications



Interactive Proof Systems IPS: Examples ZKP Commitment Schemes ZKP for NP Proofs of Knowledge Applications

Recall: Isomorphism of Graphs

Definition (Graph isomorphism)

Two undirected graphs G1 = (V1,E1) and G2 = (V2,E2) are said

to be isomorphic, written G1 ≈ G2, if

∃ bijection π : V1 → V2 s.t. (a, b) ∈ E1 ⇔ (π(a), π(b)) ∈ E2

I such π is called an isomorphism

Given a graph G = (V ,E ) and a bijection π : V → V ′, π(G )

represents a graph G ′ =
(
V ′,

{
(π(u), π(v))

∣∣ (u, v) ∈ E
})

Computational complexity on graph isomorphism:

Graph-Isomorphism ∈ NP
Graph-Non-Isomorphism ∈ co-NP
not known: Graph-Isomorphism ∈ NP-hard or not

not known: Graph-Isomorphism ∈ co-NP
Graph-Non-Isomorphism ∈ NP
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An Interactive Proof Systems for GNI (1/4)

Example

Peggy knows an experimental procedure to distinguish
between Korean/imported beef. (e.g. DNA test)

Peggy wishes to prove to Victor that she knows the
experimental procedure

I so that she sells the technology to Victor at a high rate.

But Peggy wants not to reveal any information about the
experimental procedure

I apart from the fact that she knows it.

A zero-knowledge proof for Peggy: blind test (> 100 times)
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An Interactive Proof Systems for GNI (2/4)

The Graph Non-Isomorphism (GNI) Problem

LGNI = {(G1,G2) |G1 and G2 are not isomorphic}

Prover P(x ,m)

P(x ,m)
(G1,G2) := x # decode

H := m # π(Gi )

# graph isomorphism은

# exp-time에 계산가능

if (H ≈ G1)

return 1
else

return 2

from the viewpoint of
interactive computation?

Verifier V (x ,m)

round := 0 # internal state variable

i := None # internal state variable

V (x ,m)
(G1(V1,E1),G2(V2,E2)) := x
if m 6= ε # ≥ second round

j := m # decode

if (i 6= j)
return F # 바로 reject

elif (round = |V1|)
return T # accept

i := random({1, 2})
π := random({bijec. ∈ V1→V2})
round := round + 1

return π(Gi )
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An Interactive Proof Systems for GNI (3/4)

From the Viewpoint of Interactive Computation

Common input: undirected graphs G1 =([n],E1), G2 =([n],E2)

Repeat the following steps n times:

1 Verifier chooses a random i ∈ {1, 2} and a random
permutation π ∈ Sn, and sends H = π(Gi ) to prover

2 Prover computes j ∈ {1, 2} s.t. Gj ≈ H, and sends j to
verifier

3 Verifier checks to see if i = j

Verifier accepts prover’s proof if i = j in each of the n rounds.

Indeed an interactive proof system?

completeness: 〈P,V 〉(G1,G2) = T for all G1 6≈ G2 ?

soundness: ∀P∗, Pr
[
〈P∗,V 〉(G1,G2) = F

]
= 1− ε(|x |)

for all G1 ≈ G2 ?
poly-time verifier: obvious

I prover의 time-bound는 전혀 제한하지 않았음을 상기
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An Interactive Proof Systems for GNI (4/4)

Completeness: ∀G1 6≈ G2, 〈P,V 〉(G1,G2) = T

1 Exactly one of G1,G2 is isomorphic to H =π(Gi ), and the

other not is not isomorphic to H

2 Prove can find Gj that is isomorphic to H (in exp-time), and

send to verifier the right answer (s.t. j = i)

Soundness: ∀P∗, ∀G1 ≈ G2, Pr
[
〈P∗,V 〉(G1,G2) = F

]
= 1−ε(|x |)

1 Let π∗ be an isomorphism s.t. π∗(G1) = G2, and

π be a random permutation selected by verifier

2 The probability distributions of π and π ◦ π∗ are the same

3 The pdf of π(G1) and π(G2) = (π ◦ π∗)(G2) are the same

4 Thus, no prover can do better than make a guess j = 1 or 2,

and so the probability of guessing all n choice ≤ 2−n

Poly-time verifier: obvious
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An Interactive Proof Systems for GI (1/2)

The Graph Isomorphism (GI) Problem

LGI = {(G1,G2) |G1 and G2 are isomorphic}

From the Viewpoint of Interactive Computation

Common input: undirected graphs G1 =([n],E1), G2 =([n],E2)

Additional input to prover: isomorphism π∗ s.t. π∗(G2) = G1

I prover will convince verifier existence of π∗ (w/o revealing π∗)

Repeat the following steps n times:

1 Prover chooses a random permutation π ∈ Sn, and sends
H = π(G1) to prover

2 Verifier sends a random i ∈ {1, 2} to prover

3 Prover sends to verifier σ =

{
π if i = 1

π ◦ π∗ if i = 2

4 Verifier checks if σ(Gi ) = H

Verifier accepts if σ(Gi ) = H in each of the n rounds.



Interactive Proof Systems IPS: Examples ZKP Commitment Schemes ZKP for NP Proofs of Knowledge Applications

An Interactive Proof Systems for GI (2/2)

Completeness: ∀G1 ≈ G2, 〈P,V 〉(G1,G2) = T

1 If i = 1, then σ(Gi ) = π(G1) = H

2 If i = 2, then σ(Gi ) = π(π∗(G2)) = π(G1) = H
I 참고: π의 역할은 π∗를 uniform 확률분포속에 숨겨주기

Soundness: ∀P∗, ∀G1 6≈ G2, Pr
[
〈P∗,V 〉(G1,G2) = F

]
= 1−ε(|x |)

(What happens if an (invalid) prover P∗ tries to cheat verifier?)

1 No prover P∗ can send H that is isomorphic to both G1,G2

2 The probability that verifier picks i s.t. Gi 6≈ H is ≥ 2−1

3 If Gi 6≈ H, then there is no σ ∈ Sn s.t. σ(Gi ) = H. Thus, P∗

can cheat verifier with probability ≤ 2−1

4 The probability that P∗ can cheat verifier n rounds ≤ 2−n

IPS for GNI와 달리 prover도 poly-time algorithm임에 주목
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Zero-Knowledge?

Does the interactive proof systems (IPSs)for GNI/GI reveal any
“knowledge” about the proofs beyond mere existence?

IPS for GNI:

Verifier가 prover로부터 얻을 수 있는 “knowledge”는 이미

verifier 자신이 알고 있는 것이 전부

Non-isomorphism의 proof에 대한 어떤 정보도 얻을 수 없음

IPS for GI:

All that verifier sees is a random isomorphic copy H of G1,G2

and a permutation σ s.t. σ(G1)=H or σ(G2)=H

Verifier가 이 정보로부터 isomorphism π∗에 대한 조금의

“knowledge”를 얻을 수 있을까?

이제 zero-knowledge를 엄밀하게 정의해보자!
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Perfect Zero-Knowledge Proof Systems

Informally, an interactive proof system (P,V ) for a language L is
said to be zero-knowledge if

whatever can be obtained from P (in poly-time) on x ∈ L can
also be computed by V alone (in poly-time)

p.p.t = probabilistic polynomial-time

Definition (Perfect Zero-Knowledge)

Let (P,V ) be an IPS for some language L. We say that (P,V ), or
actually P, is perfect zero-knowledge if

∀ p.p.t. ITM V ∗, ∃ p.p.t. TM M∗, ∀x ∈ L,

random variable 〈P,V ∗〉(x) and M∗(x) are equally distributed

Such M∗ is called a (perfect) simulator for (P,V ∗)

주의: cheating verifier를 고려하려고 V 대신에 ∀V ∗로 정의
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Simulator for IPS for GI

The following sequence of date, called transcript, fully captures
verifier’s view of interactive computation:

T =
(
(G1,G2), (H1, i1, σ1), (H2, i2, σ2), · · · , (Hn, in, σn)

)
Any (fake) verifier V ∗ can simulate transcripts by itself!

T := (G1,G2)
for (j := 1 to n)

Choose ij ∈ {1, 2} at random

Choose σj ∈ Sn at random

Compute Hj ∈ σj(Gij ) at random

T := append
(
T, (Hj , ij , σj)

)
Informally speaking,

이런 방식으로 흉내낸 transcript의 마지막 계산 값을
M∗(G1,G2)로 simulator를 정의해버리면

랜덤변수 〈P,V 〉(G1,G2)와 M∗(G1,G2)의 확률분포는 동일!
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Computational Zero-Knowledge Proof Systems

PKZ의 정의는 지나치게 강하다고 볼 수도 있음

조건을 약화시키면 더욱 많은 language에 대해 더욱
효율적인 ZKP를 구성할 수 있음

랜덤변수 〈P,V ∗〉(x)와 M∗(x)의 확률분포가 똑같을
필요까지는 없고, computationally indistinguishable이면 충분

Definition (Computational Zero-Knowledge)

Let (P,V ) be an IPS for some language L. We say that (P,V ), or
actually P, is computational zero-knowledge if

∀ p.p.t. ITM V ∗, ∃ p.p.t. TM M∗,

the following ensembles are computationally indistinguishable:{
〈P,V ∗〉(x)

}
x∈L and

{
M∗(x)

}
x∈L
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Summary: Cheating Relations

Zero-knowledge proof의 정의의 어떤 요소에서 cheating이
prevent되나?

Completeness: 딱히 cheater가 존재하지 않음

Soundness: prover가 cheater가 될 수 있음. prover가 x /∈ L의

proof가 존재한다고 속이는 것을 막기 위한 정의를 위해 all

potential (fake) “prover” P∗로 정의

Zero-knowledge: verifier가 cheater가 될 수 있음. verifier가

x ∈ L에 대한 prover의 (zero-knowledge) proof에서 정보를

crack하는 것을 막기 위한 정의를 위해 all ponential (fake)

“verifier” V ∗로 정의
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Recall: Secure Coin flipping

Alice and Bob

talk about going for dinner over telephone and

want to decide who will pay for it.

The event must happen in the following order:

1 Alice flips a coin.

2 The coin lands. Alice notify Bob.

3 Bob informs Alice of his guess (head/tail).

4 Alice tells Bob whether the guess is right or not.

An analog protocol to prevent Alice from cheating Bob

Step 2: Alice (1) take a photo of the coin landed, (2) put the
photo in a safe, (3) locks the safe, (4) send the safe to Bob.

Step 4: Alice send the key to unlock the safe.
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Recall: Coin flipping using a public-key cryptosystem

An analog protocol to prevent Alice from cheating Bob

Step 2: Alice (1) take a photo of the coin landed, (2) put the
photo in a safe, (3) locks the safe, (4) send the safe to Bob.

Step 4: Alice send the key to unlock the safe.

A digital protocol

photo ⇒ 0 or 1 (with random garbage padded)

safe ⇒ any one-way trapdoor function (encryption func)

key of the safe ⇒ trapdoor info (secret key)

1 Alice randomly chooses 0 or 1.
I coin flipping not needed!

2 Alice sends its encryption (and the encryption function.)

3 Bob informs Alice of his guess (0 or 1).

4 Alice sends Bob the secret key to invert the encryption func.
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Commitment Schemes: Informal Definition

Very informally, a commitment scheme is a two-phase interactive
protocol bet’n two parties, a sender and a receiver, in which:

The first phase (commit phase):

1 Sender picks a random key k

2 Sender computes an encryption y = ek(m) of a msg m

3 Sender sends y (a “commitment” to m) to receiver

The second phase (reveal phase):

1 Sender sends the key k (along with dk(·)) to receiver

2 Receiver opens the “commitment” y to find out m

A commitment scheme must satisfy two security requirements:

Hiding: no p.p.t. receiver can cheat (no info. about m from y)

Binding: no p.p.t sender can cheat (no k ′ s.t. ek ′(m
′)=ek(m))
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Commitment Schemes: Informal Definition

A commitment scheme must satisfy two security requirements:

Hiding: no p.p.t. receiver can cheat
I no information about m can be computed from y in poly-time

Binding: no p.p.t sender can cheat
I no k ′,m′ s.t. ek′(m′)=ek(m) can be computed in poly-time
I i.e.

p.p.t. sender/receiver로 제한한 이유: exp-time을 허용하면 두
조건 모두 깨지므로

Public-key encryption function의 존재성(현재로서는 P 6=NP

보다 강한 명제)을 가정한다면 위 조건들을 모두 만족하는

commitment scheme을 쉽게 만들수 있음

m ∈ {0, 1}인 경우만 고려해도 충분 (bit를 이어붙이면 됨)
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Commitment Schemes

Definition (Commitment Scheme (somewhat simplified))

A p.p.t. TM C is called a commitment scheme if there exists some
polynomial p(·) s.t.

hiding: ∀n ∈ N, ∀v0, v1 ∈ {0, 1}n,
the following ensembles are computationally indistinguishable:{

C (v0, r)
}
r∈{0,1}p(n) and

{
C (v1, r)

}
r∈{0,1}p(n)

binding: ∀n ∈ N, ∀v0, v1 ∈ {0, 1}n, ∀r0, r1 ∈ {0, 1}p(n),
C (v0, r0) 6= C (v1, r1)

Theorem

If one-way permutations exist, then commitment schemes exist
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Zero-Knowledge Proof System for 3-Colorability (1/2)

The Graph 3-Colorability (G3C) Problem ∈ NPH
LG3C =

{
G =(V ,E )

∣∣ ∃φ :V→ [3], ∀(u, v) ∈ E , φ(u) 6= φ(v)
}

From the Viewpoint of Interactive Computation

Common input: undirected graph G =(V ,E )

Additional input to prover: valid 3-coloring φ :V→ [3] of G
I prover will convince verifier existence of φ (w/o revealing φ)

Repeat the following steps |V ||E | times:

1 Prover chooses a random permutation π ∈ S3, and sends(
Cv (π(φ(v)))

)
v∈V to sender (each Cv is a commitment)

2 Verifier sends a random (u, v) ∈ E to prover
3 Prover sends keys to open commitments Cu(·) and Cv (·)
4 Verifier opens commitments au = π(φ(u)), av = π(φ(v))
5 Verifier checks if au 6= av

Verifier accepts if au 6= av in each of |V ||E | rounds
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Zero-Knowledge Proof System for 3-Colorability (2/2)

Completeness: ∀G ∈ LG3C , 〈P,V 〉(G ) = T

1 For any (u, v) ∈ E , π(φ(u)) 6= π(φ(v)) (since φ(u) 6= φ(v))

Soundness: ∀P∗, ∀G /∈ LG3C , Pr
[
〈P∗,V 〉(G ) = F

]
= 1−ε(|x |)

1 For each φ∗ :V→ [3], there is (u, v) ∈ E s.t. φ∗(u) = φ∗(v)

2 By the binding property of the commitment scheme, a

cheating prover is caught with probability ≥ 1/|E |
3 The probability that a cheating prover successfully cheats in

all |V ||E | rounds is ≤ (1− 1/|E |)|V ||E | ≤ e−|V |

(Computational) Zero-knowledge: (see next slide for more..)

The hiding property of the commitment scheme guarantees

that, in each iteration, everything except 2 random colors is

hidden
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Simulator for ZKP for 3-Colorability

Any (fake) verifier V ∗ can simulate transcripts by itself!

1 Choose (u′, v ′) ∈ E at random

2 Choose a′u, a
′
v ∈ [3] s.t. a′u 6= a′v at random

3 Let a′w = 1 for all w ∈ V \ {u′, v ′}
4 Commit to a′u for each u ∈ V and feed the commitments to

V ∗ (just as honest prover)
I while also providing it truly random bits as its random coins

5 Let (u, v) denote the answer from V ∗

6 If (u, v) = (u′, v ′), then reveal the two colors, and output the

view of V ∗

7 Otherwise, restart the process from the first step, but at most

|V ||E | times.

8 If, after |V ||E | repetitions the simulation has not been

successful, output F
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(Computational) ZKP for NP

Theorem

If one-way permutations exist,
then every L ∈ NP has a (computational) ZKP.

1 Fix a language L ∈ NP. Note that LG3C ∈ NPC
2 By Cook-Levin theorem, there is a deterministic poly-time

algorithm (i.e. reduction) R : {0, 1}∗ → {0, 1}∗ s.t.

x ∈ L ⇐⇒ R(x) ∈ LG3C
3 Furthermore, for each x ∈ L and its certificate z , reduction R

also implicitly computes the certificate z ′ of R(x) ∈ LG3C
I certificate도 계산하도록 augment된 reduction을 Rc로 두자

4 L의 ZKP를 LG3C의 ZKP를 이용하여 구성하면 된다:

z := certificate of X ∈ L
PL(x ,m)

(G , z ′) := Rw (x , z) # reduction

PLG3C
(G ,m, z ′)

V (x ,m)
G := R(x) # reduction

VLG3C
(G ,m)
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Remark

임의의 L ∈ NP에 대한 ZKP를 구성하기 위해 하필 G3C를

이용한 이유는 이것이 NP-complete이기 때문

I GI처럼 NP-easy만 증명된 language의 경우 L ∈ NP에서 LGI

로의 poly-time reduction이 존재함이 보장되지 않움

L ∈ NP에 대한 “practical” ZKP를 구성하려고 할 경우에는

G3C로 reduction시켜서 만든 generic ZKP를 사용하면 곤란

I poly-time reduction L 7→ SAT 7→ G3C 과정에서

instance/certificate의 크기가 매우 커지므로

G3C에 대한 ZKP는 perfect는 아니고 computational ZK만

보장되므로 L ∈ NP에 대한 computational ZKP의

존재성까지만 보장됨
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Complexity Issues

BPP ⊆ PZK ⊆ CZK ⊆ IP = PSPACE
PZK: the set of languages with perfect ZKP

CZK: the set of languages with computational ZKP

If one-way functions exists, then CZK = IP (= PSPACE)

It is widely believed that BPP ( PZK ( CZK

Poly-time prover

Theorem: Every L ∈ NP has a (computational) ZKP where
prover can be implemented in poly-time given a certificate

G3C, GI가 (certificate가 주어진 상황에서) poly-time prover
를 가짐을 상기

I NP에 속하는지 여부가 밝혀지지 않은 GNI는 exp-time
prover를 소개했었음

Prover가 poly-time에 작동하는 것은 identification scheme,
multi-party secure computation 등의 application에서 필요
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Zero-Knowledge Proofs of Knowledge

Let L ∈ NP, and CL be a poly-time certifier for L.

z is a proof of (the proposition) “x ∈ L” if CL(x , z) = T

Zero-knowledge proof of (the proposition) “x ∈ L”: proof of the

“mere” existence of such z (w/o revealing any info about z)

I prover는 z의 존재성만 보이면 되므로 z의 실체는 몰라도 됨

Zero-knowledge proof of knowledge of “x ∈ L”: proof of

actually knowing such z (w/o revealing any info about z)

I prover는 z의 존재성을 넘어서서 z의 실체를 알아야 함

I c.f. non-constructive proof vs. constructive proof

Zero-knowledge proof of knowledge는 ZKP보다 강한 정의로

어떤 application에서는 이것이 필요한 경우가 있다
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Proofs of Knowledge

For simplicity, we cosider only L ∈ NP (with poly-time certifier CL)

Definition (Proof of Knowledge)

A ZKP (P,V ) for L is called a proof of knowledge with knowledge
error bound ε and extractor slowdown es if

there is TM K (called knowledge extractor) s.t. ∀P∗, ∀x ∈ L,

Pr
[
〈P∗,V 〉(x) = ”T”

]
≥ ε+ δ =⇒

K (P∗, x) computes z s.t. CL(x , z) = T

in average time of ≤ es · |x |O(1) · δ−1

ZKP for GI is a knowledge of proof with knowledge error 1/2

ZKP for G3C is a knowledge of proof with k. error 1− 1/|E |
여러번 돌려서 knowledge error를 exponentially 줄일 수 있음

Theorem

Any L ∈ NP has a ZKP for proofs of knowledge (assuming OWF..)
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Identification Scheme

사용자(prover)가 서버(verifier)로의 접속을 위해 신원을

확인(identification)시키는 절차
I 사용자의 passwd를 암호화해서 보내면 될 것 같은데..

RSA와 같은 public-key encryption scheme에 기반한 digital

signature를 사용하면 어떤 방식의 cracking이 가능?
I 암호화된 passwd를 그대로 Eve가 가로채서 사용자 행세..

I 또는, 서버에 passwd 관련된 정보가 남은 상태에서, Eve가

서버를 턴다면..

I 알고보니 서버 관리자가 Eve라면..

사용자가 L ∈ NPC와 certificate(proof) z를 구성할 수 있는

x ∈ L를 선택하여 z를 암호로 삼고, 서버에 (L, x)를

넘겨주고 서버와의 ZKP of proof of knowledge를 돌리면

서버에는 암호 z에 대한 어떤 정보도 남지 않음!
I 임의의 x에 대한 z는 구성하기 힘들지만, (x , z)를 한번에

구성할 수 있는 방법은 많음
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Recall: Secure Multi-Party Computation for Dating for Shy People

encryption: f (x) = xe mod n / dec.: f −1(y) = yd mod n

Dating protocol based on RSA (for avoiding Alice’s shame)

1 Alice creates e, d , n and publicize the public key (i.e. f (x)).

2 Alice sends Bob
(
f (x), f (y)

)
where x , y are:

I x =“0“+random, y =“0“+random if not interested in Bob
I x =“0“+random, y =“1“+random if interested in Bob
I Both f (x) and f (y) look completely random to Bob.

3 Bob picks a random r ∈ Zn. Then, he sends to Alice z :
I z = f (x) · f (r) mod n = f (xr) if not interested in Alice
I z = f (y) · f (r) mod n = f (yr) if interested in Alice

4 Alice computes/sends f −1(z) = xr or yr mod n back to Bob.
I Either way, f −1(z) looks completely random (by r) to Alice

5 Bob computes w = f −1(z) · r−1 mod n = x or y .
I Bob not interested: w = x (Alice’s interest not revealed)
I Bob interested: w = y (Alice’s interest revealed)
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Multi-Party Secure Computation with ZKP

Alice/Bob이 앞의 protocol을 충실히 따른다고 가정할 때

원하는 함수를 정확히, 정보유출없이 계산할 수 있음

I f : {“interested”, “uninterested”}2 → {“date”, “rupture”} ;

f (x1, x2) = “date” iff x1 = x2 = “interested”

이런 상황을 “honest but curious” player만 참가한다고

하는데, “malicious” player가 참가할 경우에는 위 함수가

제대로 계산되지 않음 (즉, cheating이 가능할 수도 있음)

Malicious cheating을 막기 위해서는 앞 페이지의 protocol의

각 step마다 다음 명제에 대한 ZKP를 함께 보내면 됨:

“내가 보내는 msg가 protocol상에 정의된 것과 같음”

I 적절한 L ∈ NP가 존재하여 위 명제를 x ∈ L로 표현가능

I L ∈ NP에 대한 (computational) ZKP는 항상 존재!
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