MC525: Cryptography
#12: Zero-Knowledge Proofs

Sang-Hyun Yoon

Zero-Knowledge Proof Systems: Informal Definition

Very informally, a zero-knowledge proof system is an interactive
protocol between two parties, a prover and a verifier, in which:

@ Both parties have in input a proposition (that is true/false).

» e.g. a graph G and " G is 3-colorable”, or

N, r > 0 and "there is an integer x s.t. x> mod N = r".

@ If the proposition is true, then then prover can prove to the
verifier that the proposition is true (completeness)

@ If the proposition is false, then then prover cannot cheat the
verifier that the proposition is true (soundness)

© without revealing any additional information beyond the truth
of the proposition (zero-knowledge)

> i.e. verifier alone cannot still prove the proposition

Interactive Proof Systems

Outline

© Interactive Proof Systems

Interactive Proof Systems
000000

(Algorithmic) Problems vs. Propositions vs. Languages

Algorithmic problems (decision version)
o f: X —{T,F}

» eg. fa(G1, G2) = {)
F otherwise

» c.f. certificate, witness, proof

T if graphs G; and G; are isomorphic

Propositions
@ input instances of the decision-version of the ATP problem
» f(proposition) =
T if provable from ZFC (i.e. true in all models of ZFC)
F if disprovable from ZFC (i.e. false in all models of ZFC)

? if independent from ZFC

Languages (history of computation DFA/NFA/PDA/TM..)
@ L = f!(T) encoded with 0/1s (i.e. L C {0,1}*)
» eg. Lg = {(Gy, Gy)|graphs G; and G, are isomorphic}

Interactive Proof Systems
0e00000

(Algorithmic) Problems vs. Languages

Let f: X — {T,F} be an algorithmic problem where X is infinite.
o = xe Xl AJ|= wetolof 6f2 2 X+= countable set
o [tetA, &2lof bijection ¢ : X — {0,1}*=2 0| 306t0{ fE

binary encoding & 4~ /Tt
o L =o(f (T))c{01} 25"
X €L <— f() T
x¢ L < f(¢p7'(x)) =F
e 2|9 bijection ¢, ¢’ € X —{0,1}*01l CHoll ¢, ¢’ It poly-time
computable0|H ¢(x) — ¢/(x), ¢'(x) — ¢(x) mapping=
e &, 01" encodingS /\f ol &= HMSEE SHOIM F2t
(ile. L=o(F1(T))2t L' = ¢/'(F}(T))«= isomorphic)
o Le20W oz fe2l0M 2 Fga 4 9
(isomorphic) languaget2 4101 M ALS

2 7, problem}
f=3
O

Interactive Proof Systems
[e]e] lele]e]e]

Interactive Turing Machines

Definition (Interactive Turing Machine (ITM))

M(x,m) HEjS] TM (=3 20t FIHE & US)
@ x= Of2HO0l A common input, m& AT TM2| output

@ Internal state variable& JIZ&! 4~ QS (5, pure function Of!)

@ may be randomized (with random number generator for coin-toss)

| A

Definition (Interactive Computation of two ITMs)

Given two ITMs P,V and common input x, the result of the
interactive computation, written (P, V)(x), is the return value of
m, =€
while m, ¢ {"T","F'} # "accept"/"reject"
mp == P(x, my)
m, := V(x, mp)
return m,

If P,V are randomized, then (P, V)(x) is a random variable

Interactive Proof Systems
000e000

Interactive Proof Systems

Fix a language L € 2101}

Definition (Interactive Proof System)

An interactive proof system for L is a pair of two ITMs (P, V) s.t.

eVxel, Pr[(P,V)(x) ="T"] =1 (completeness)
» P, VJ} randomized?! 12 G| E5I0IAM HEH T MO
. =12 . =1—¢€(|x]) 2 relax2t =& AUS

o VP*Vx ¢ L, Pr[(P*,V)(x)="F"] > 1—¢(|x|) (soundness)
» where 0 < ¢(|x|) < 1/p(|x]|) for every polynomial function p(-)
» 2let Eel L= JtsSt (prover) POl CHoll A &loHof &
» (Fake prover& ¢(|x))2tS2 £ £ J0IAM) 1 —¢(|x|) 2

@ V is a (probabilistic) polynomial-time TM
» whereas no time-bound placed on P (may be exp-time TM)

Such P is called a prover, and V a verifier

Interactive Proof A Zero-Knowledge = Zero-Knowledge Proof

Interactive Proof Systems
0000e00

Interactive Proof Systems: Trivial Cases (1/2)

Every language L € P has an interactive proof system
o Let A, be any poly-t. algorithm for (problem = language) L
o Let V(x,m) = A;(x) (just ignore m)
@ Then, for any ITM P, (P, V) is an interactive proof system

» completeness, soundness, deterministic poly-time

In the same say, every language in BPP also has an interactive
proof system

Interactive Proof Systems
00000e0

Interactive Proof Systems: Trivial Cases (2/2)

Every language in L € N'P has an interactive proof
@ Let C; be any poly-time certifier for L

» i.e. for each x € L, there is (certifier/proof) y s.t. C(x,y) =T
> i.e. foreach x € L, thereisno y s.t. C(x,y) =T

proof) y sit. Ci(x,y)=T ifxel
o Let P(x,m) = ()y ()
None otherwise
» recall: prover P= exp-timelf] $3 5= Z40| 5|2 €

o Let V(x,m) = Ci(x,m) (i.e.just check if indeed a proof!)

@ Then, (P, V) is an interactive proof system
» complete: x € L™ V(x, P(x,-)) = Ci(x,proof of x) =T
» sound: x ¢ L% V(x, P*(x,-)) = F for all P* (x has no proof)
> poly-time verifier: V = C; is a poly-time TM

The above (P, V) is not a zero-knowledge proof system (stay tuned)

Interactive Proof Systems
000000e

The Class ZP

Definition (ZP)
o TP & {L € 2{0%1" | [has an interactive proof system}

» not the languages with zero-knowledge proof systems

e BPPUNP C IP
» Remind: it is not known whether or not BPP C NP

Theorem (Shamir, 1992)
IP = PSPACE

IPS: Examples

Outline

© IPS: Examples

IPS: Examples
90000000

Recall: Isomorphism of Graphs

Definition (Graph isomorphism)

Two undirected graphs G; = (V4, E1) and G, = (V,, Ep) are said
to be isomorphic, written G; = Gp, if
@ I bijection m: Vi — Vo s.it. (a,b) € E1 < (w(a),n(b)) € E>

» such 7 is called an isomorphism

@ Given a graph G = (V, E) and a bijection 7 : V — V/, 7(G)
represents a graph G’ = <V’, {(=(u),7(v)) | (u,v) € E})

Computational complexity on graph isomorphism:

GRAPH-ISOMORPHISM € NP

GRAPH-NON-ISOMORPHISM € co-NP

not known: GRAPH-ISOMORPHISM € NP-hard or not

not known: GRAPH-ISOMORPHISM € co-NP
GRAPH-NON-ISOMORPHISM € NP

IPS: Examples
[e] Ielelele]ele)

An Interactive Proof Systems for GNI (1/4)

@ Peggy knows an experimental procedure to distinguish
between Korean/imported beef. (e.g. DNA test)

@ Peggy wishes to prove to Victor that she knows the
experimental procedure
» so that she sells the technology to Victor at a high rate.

@ But Peggy wants not to reveal any information about the
experimental procedure
» apart from the fact that she knows it.

@ A zero-knowledge proof for Peggy: blind test (> 100 times)

v

IPS: Examples
[e]e] lelele]ele)

An Interactive Proof Systems for GNI (2/4)

The Graph Non-lsomorphism (GNI) Problem

Lent = {(G1, G2) | G1 and Gy are not isomorphic}

Prover P(x, m)

P(x, m)
(G1,Gy) :=x # decode
H:=m # 7(G)

graph isomorphism
exp-timeOi| AHAJIs
if (H~ Gy)

return 1
else

return 2

from the viewpoint of
interactive computation?

Verifier V(x, m)

round := 0 # internal state variable
| := None # internal state variable
V(x, m)
(G1(V1, E1), Go(Va, By)) == x
if m#£e # > second round
Jji=m # decode
if (i %)
return F # HIZ reject
elif (round = |V4|)
return T # accept

i := random({1,2})
7 := random({bijec. € Vi — V2})
round := round + 1

return 7(G;)

IPS: Examples
[e]e]e] lele]ele)

An Interactive Proof Systems for GNI (3/4)

From the Viewpoint of Interactive Computation

@ Common input: undirected graphs Gy =([n], E1), G2=([n], E2)
@ Repeat the following steps n times:

© Verifier chooses a random / € {1,2} and a random
permutation 7™ € S,, and sends H = 7(G;) to prover

@ Prover computes j € {1,2} s.t. G; =~ H, and sends j to
verifier

© Verifier checks to see if i =

@ Verifier accepts prover's proof if i = j in each of the n rounds.

v

Indeed an interactive proof system?
@ completeness: (P, V)(Gy, Gp) = T for all Gy % Gy ?
e soundness: VP*, Pr[(P*,V)(G1, G) = F] = 1 —¢(|x])
forall Gy~ G, ?
@ poly-time verifier: obvious
» prover2| time-bound= T 6 M|GHGHA| 2US

njo

/\I'j'

o

IPS: Examples
[e]e]e]e] lelele)

An Interactive Proof Systems for GNI (4/4)

Completeness: VG % Go, (P,V)(G1,G) =T
@ Exactly one of Gy, Gy is isomorphic to H=7(G;), and the
other not is not isomorphic to H
@ Prove can find G; that is isomorphic to H (in exp-time), and
send to verifier the right answer (s.t. j = /)

Soundness: YP*, VG =~ Gy, Pr[(P*,V)(Gi, G) =F] = 1—¢(|x|)
Q Let 7 be an isomorphism s.t. 7*(G1) = Gy, and
7w be a random permutation selected by verifier
© The probability distributions of m and 7 o * are the same
© The pdf of 7(Gy) and 7(Gy) = (w o 7*)(Gy) are the same
© Thus, no prover can do better than make a guess j =1 or 2,
and so the probability of guessing all n choice < 277

Poly-time verifier: obvious

IPS: Examples
[e]e]e]e]e] lele)

An Interactive Proof Systems for GI (1/2)

The Graph Isomorphism (Gl) Problem
Lei = {(G1, G)| Gy and Gy are isomorphic}

From the Viewpoint of Interactive Computation

@ Common input: undirected graphs Gy =([n], E1), Go=([n], E2)
@ Additional input to prover: isomorphism 7* s.t. 7*(Gy) = G;
» prover will convince verifier existence of ©* (w/o revealing 7*)

@ Repeat the following steps n times:

@ Prover chooses a random permutation 7w € S, and sends
H = m(Gy) to prover
@ Verifier sends a random 7 € {1,2} to prover
T
© Prover sends to verifier o = " I I
mom* ifi=2
Q Verifier checks if o(G;) = H

@ Verifier accepts if 0(G;) = H in each of the n rounds.

IPS: Examples
00000080

An Interactive Proof Systems for Gl (2/2)

Completeness: VG ~ Gy, (P, V)(Gl, G) =T
Q If i =1, then o(G;) = 7(G1) =
Q If i =2, then o(G;) = (7™ (Gg)) m(G)=H

F: 79| AASte 7*Z yniform &2 EZ £ 0|

ol

>

o

R

I
o>

Soundness: VP*, VGy # Gy, Pr[(P*, V)(Gy, Go) =F] = 1—¢(|x|)

(What happens if an (invalid) prover P* tries to cheat verifier?)
© No prover P* can send H that is isomorphic to both G, G;
@ The probability that verifier picks i s.t. G; % H is > 271

© If G; % H, then there is no o € S, s.t. 0(G;) = H. Thus, P*
can cheat verifier with probability < 27!

@ The probability that P* can cheat verifier n rounds < 27"

IPS for GNI2} Ete| proverE poly-time algorithm@! 0l ==

IPS: Examples
0000000e

Zero-Knowledge?

Does the interactive proof systems (IPSs)for GNI/GI reveal any
“knowledge” about the proofs beyond mere existence?

IPS for GNI:

o VerifierJ} prover2 £ & ¢ U
verifier ApA10] &0 Q= Z40| ML

@ Non-isomorphism2| proofil Ciiet ({8 ME & &
IPS for GI:

@ All that verifier sees is a random isomorphic copy H of G, G
and a permutation ¢ s.t. o(G1)=H or o(Go)=H

@ VerifierJ} 0| B 22 F isomorphism 70| Cigt =3 2|

“knowledge” E L2 + U217

O M| zero-knowledgeZ 1 2UGIH % 2|0 & X}

[

Outline

© zkpP

ZKP
{ Jelele]

Perfect Zero-Knowledge Proof Systems

Informally, an interactive proof system (P, V) for a language L is
said to be zero-knowledge if

@ whatever can be obtained from P (in poly-time) on x € L can
also be computed by V' alone (in poly-time)

p.p.t = probabilistic polynomial-time

Definition (Perfect Zero-Knowledge)

Let (P, V) be an IPS for some language L. We say that (P, V), or
actually P, is perfect zero-knowledge if

e Vp.pt ITM V* HJppt. TM M*, Vx e L,
random variable (P, V*)(x) and M*(x) are equally distributed
Such M* is called a (perfect) simulator for (P, V*)

Z=9]: cheating verifier& Dot V Tj2l0 vV 2 A9

ZKP
0®00

Simulator for IPS for GI

The following sequence of date, called transcript, fully captures
verifier's view of interactive computation:

o T — ((Gl7 G2)7 (H17i1701)7 (H27i2702)7 T (Hnainao'n))
Any (fake) verifier V* can simulate transcripts by itself!

T = (Gl, G2)

for (j:=1 to n)
Choose jj € {1,2} at random
Choose 0j € S, at random
Compute H; € 0;(G;;) at random
T := append(T, (Hj, ij, o))

Informally speaking,
o 0|21 BrAlo 2 FUULH transcriptl| OFX|St HAE e
M*(G1, Gy) 2 simulatorS 0|5t 2| o
o MFH (P, V)(G1, &)t M*(Gy, ;)2 BlER X = SY!

ZKP
0000

Computational Zero-Knowledge Proof Systems

e PKZO| Mol= K|ILIXIH Zoitty 2 % AUS

o ~UE CfstAlZ|H TS W2 languagelil ol TS
M0 ZIKPE 74 £ US

o MY (P V*)(x)2F M*(x)Q] EELX I SLS
ZIQWIKl= 410, computationally indistinguishable0|%1 &2

Definition (Computational Zero-Knowledge)

Let (P, V) be an IPS for some language L. We say that (P, V), or
actually P, is computational zero-knowledge if

o Vp.pt ITM V* Jppt. TM M*,

the following ensembles are computationally indistinguishable:
{(P, V*)(x)}xeL and {M*(X)

}XEL

ZKP
000e

Summary: Cheating Relations

Zero-knowledge proof2| Z 2|2 01 L A0l Al cheatingO|
preventE|L}?
@ Completeness: &G| cheater)} &A1oHKA| 243
@ Soundness: proverJ| cheaterJ| &
proof)} ZXISIHCID £0]= A

potential (fake) “prover” P*%

£ UG, proverJt x ¢ LO]
|

op)| 15t Mol 2 9ol al

O?d FU\O o

Q|

@ Zero-knowledge: verifierJ} cheaterJ} & 4 2 &. verifierJ}
x € LOIl CHet prover2| (zero-knowledge) proofOil Al MY E
crackol= 248 9| st A2l E 2ol all ponential (fake)
“verifier' V*g2 9|

Commitment Schemes

Outline

@ Commitment Schemes

Commitment Schemes
0000

Recall: Secure Coin flipping

Alice and Bob
@ talk about going for dinner over telephone and

@ want to decide who will pay for it.

The event must happen in the following order:
© Alice flips a coin.
© The coin lands. Alice notify Bob.
© Bob informs Alice of his guess (head/tail).
©Q Alice tells Bob whether the guess is right or not.

An analog protocol to prevent Alice from cheating Bob

@ Step 2: Alice (1) take a photo of the coin landed, (2) put the
photo in a safe, (3) locks the safe, (4) send the safe to Bob.

@ Step 4: Alice send the key to unlock the safe.

Commitment Schemes
(o] Jele]e]

Recall: Coin flipping using a public-key cryptosystem

An analog protocol to prevent Alice from cheating Bob

@ Step 2: Alice (1) take a photo of the coin landed, (2) put the
photo in a safe, (3) locks the safe, (4) send the safe to Bob.

@ Step 4: Alice send the key to unlock the safe.

v

A digital protocol

@ photo = 0 or 1 (with random garbage padded)

@ safe = any one-way trapdoor function (encryption func)

@ key of the safe = trapdoor info (secret key)

N

© Alice randomly chooses 0 or 1.
» coin flipping not needed!

@ Alice sends its encryption (and the encryption function.)
© Bob informs Alice of his guess (0 or 1).
© Alice sends Bob the secret key to invert the encryption func.

Commitment Schemes
[e]e] le]e]

Commitment Schemes: Informal Definition

Very informally, a commitment scheme is a two-phase interactive
protocol bet'n two parties, a sender and a receiver, in which:

The first phase (commit phase):
@ Sender picks a random key k
@ Sender computes an encryption y = e,(m) of a msg m

© Sender sends y (a “commitment” to m) to receiver

The second phase (reveal phase):
© Sender sends the key k (along with di(+)) to receiver

© Receiver opens the “commitment” y to find out m

A commitment scheme must satisfy two security requirements:
@ Hiding: no p.p.t. receiver can cheat (no info. about m from y)

@ Binding: no p.p.t sender can cheat (no k' s.t. e (m')=ex(m))

Commitment Schemes
[e]e]e] Jo]

Commitment Schemes: Informal Definition

A commitment scheme must satisfy two security requirements:

@ Hiding: no p.p.t. receiver can cheat
» no information about m can be computed from y in poly-time

@ Binding: no p.p.t sender can cheat
» no k', m’ s.t. epr(m')=ex(m) can be computed in poly-time

> j.e.
p.t. sender/receiver 2 A|otot 0|7 : exp-time= 6| EotH F

p.
U 2E MReg

@ Public-key encryption function2| &AM (AR = A= P#£NP
TUH=sE 25 USot=

Commitment Schemes
[e]e]e]e]]

Commitment Schemes

Definition (Commitment Scheme (somewhat simplified))

A p.p.t. TM C is called a commitment scheme if there exists some
polynomial p(-) s.t.

@ hiding: Vn € N, Vvy, vy € {0,1}",
the following ensembles are computationally indistinguishable:
{C(v0: N} eqoayrm and {C(vi, 1)} g 13000
e binding: Vn € N, Yvg, v; € {0,1}", Vrg, n € {0,1}P("),
C(vo,n0) # C(v1,n1)

If one-way permutations exist, then commitment schemes exist

ZKP for NP

Outline

© ZKP for NP

ZKP for NP
@00000

Zero-Knowledge Proof System for 3-Colorability (1/2)

The Graph 3-Colorability (G3C) Problem € N'PH

Lesc = {G=(V,E) |36:V—[3], Y(u,v) € E, ¢(u) # &(v)}

From the Viewpoint of Interactive Computation

e Common input: undirected graph G=(V, E)
@ Additional input to prover: valid 3-coloring ¢: V —[3] of G
» prover will convince verifier existence of ¢ (w/o revealing ¢)

@ Repeat the following steps |V||E| times:

@ Prover chooses a random permutation 7 € S3, and sends
(Co(m(a(v)))) ey tosender (each C, is a commitment)

@ Verifier sends a random (u, v) € E to prover

© Prover sends keys to open commitments C,(-) and C,(+)

Q Verifier opens commitments a, = w(¢(u)), a, = 7(o(v))

© Verifier checks if a, # a,

o Verifier accepts if a, # a, in each of |V/||E| rounds

A\

ZKP for NP
0e0000

Zero-Knowledge Proof System for 3-Colorability (2/2)

Completeness: VG € Lgzc, (P,V)(G) =T
Q Forany (u,v) € E, m(¢(u)) # 7(¢(v)) (since ¢(u) # ¢(v))

Soundness: YP*, VG ¢ Lgsc, Pr[(P*,V)(G) =F] = 1—¢(|x])
© For each ¢*:V —[3], there is (u, v) € E s.t. ¢*(u) = ¢*(v)
© By the binding property of the commitment scheme, a

cheating prover is caught with probability > 1/|E|
© The probability that a cheating prover successfully cheats in
all [V||E| rounds is < (1 —1/|E)VIIEl < eIV

(Computational) Zero-knowledge: (see next slide for more..)

@ The hiding property of the commitment scheme guarantees
that, in each iteration, everything except 2 random colors is
hidden

ZKP for NP
[e]e] le]e]e)

Simulator for ZKP for 3-Colorability

Any (fake) verifier V* can simulate transcripts by itself!

0000

© 0

Choose (v, v') € E at random
Choose &, a), € [3] s.t. &), # a, at random
Let a, =1 forall we V\ {/, v}

Commit to &, for each u € V and feed the commitments to
V* (just as honest prover)

» while also providing it truly random bits as its random coins
Let (u, v) denote the answer from V*
If (u,v) = (U, V'), then reveal the two colors, and output the
view of V*
Otherwise, restart the process from the first step, but at most
|VI||E| times.
If, after |V/||E| repetitions the simulation has not been
successful, output F

ZKP for NP
[e]e]e] lele)

(Computational) ZKP for N'P

If one-way permutations exist,
then every L € NP has a (computational) ZKP.

© Fix a language L € N'P. Note that Lg3c € NPC
@ By Cook-Levin theorem, there is a deterministic poly-time
algorithm (i.e. reduction) R : {0,1}* — {0,1}* s.t.
x€ELlL «— R(X) € Lgac
© Furthermore, for each x € L and its certificate z, reduction R
also implicitly computes the certificate z’ of R(x) € Lgsc
» certificate= H|2I6IES= augmentEl reductionS R°2 T XA}
Q L2 ZKPE Lgs3c2l ZKPZ 0185101 +dot™ = Lk
z:= certificate of X €L
Pi(x, m) V(x, m)
(G,2') := R"(x,z) # reduction G = R(x) # reduction
PLG3C(G’m'Z/) VLG3C(G’m)

ZKP for NP
0000e0

Remark

o Qoo L e NPOl LHSH ZKPE F2A5})]| $loll otE G3CE
0123t 0|7+ 01Z240] NP-complete0| 7| W2
» GIX| 2 NP-easyPt ZH =l languagel| AL L e NPOIA Lg
29| poly-time reduction0| ZXf&t0| BZIE| K| Q2

o L e NPOIl THSt “practical” ZKPE FMoledl & AR20=
G3C=2 reductionA|{ A BtE= generic ZKPE AIZ6IH =2t
» poly-time reduction L — SAT — G3C 2} 0| A
instance/certificate2| 7|7} 04 HARIS 2

o G3CO| thet ZKP= perfect= 0}L| ! computational ZKZt
SZtE|e 2 L € NPO| U3t computational ZKP2|
ZEMANER| B B ELE

O0000e

Complexity Issues

BPP C PZK C CZK C IP = PSPACE
@ PZK: the set of languages with perfect ZKP
@ CZK: the set of languages with computational ZKP
o If one-way functions exists, then CZKC = ZP (= PSP.ACE)
o It is widely believed that BPP C PZK C CZK

Poly-time prover

@ Theorem: Every L € N'P has a (computational) ZKP where
prover can be implemented in poly-time given a certificate

e G3C, GIJ} (certificateJt O Z1 220 M) poly-time prover
= J}El2 A

» NPOl £6H=Al 0127} 861 AIK| %42 GNI= exp-time
prover& AJHIMAU S

@ ProverJ} poly-time0f| Zt&S6t= 24 identification scheme,

multi-party secure computation 2| applicationO| A £

Proofs of Knowledge

Outline

@ Proofs of Knowledge

Proofs of Knowledge
[1]

Zero-Knowledge Proofs of Knowledge

Let L € NP, and C; be a poly-time certifier for L.

z is a proof of (the proposition) “x € L" if Cy(x,z) =T

@ Zero-knowledge proof of (the proposition) “x € L": proof of the
“mere” existence of such z (w/o revealing any info about z)

» provers= z2| ZXA|MOF B0|M & B2 29| AMX|l= Sete &

@ Zero-knowledge proof of knowledge of “x € L": proof of
actually knowing such z (w/o revealing any info about z)
» prover= z2| EAIE S HOIMAM z2| ZAE LOI0F &

» c.f. non-constructive proof vs. constructive proof

Zero-knowledge proof of knowledge= ZKPE L} Lot Mo|=2

01t application0f| M= 01240] 2t LIt UL

Proofs of Knowledge
oe

Proofs of Knowledge

For simplicity, we cosider only L € N'P (with poly-time certifier C;)

Definition (Proof of Knowledge)

A ZKP (P, V) for L is called a proof of knowledge with knowledge
error bound € and extractor slowdown es if

@ there is TM K (called knowledge extractor) s.t. YP*, Vx € L,
Pri(P*,V)(x) ="T"] > e+ =
K(P*,x) computes z s.t. C/(x,z) =T

in average time of < es - [x|O(1) . 51

<

@ ZKP for Gl is a knowledge of proof with knowledge error 1/2
@ ZKP for G3C is a knowledge of proof with k. error 1 — 1/|E]|

o 01491 =4 Al knowledge errorS exponentially & 4 /8

Any L € N'P has a ZKP for proofs of knowledge (assuming OWF..)

ﬁ_

Applications

Outline

0 Applications

Applications
@00

Identification Scheme
AHE At (prover) 7t At (verifier) 22| T 52
ao._(ldentlflcatlon)/\IJI = AX}
> AFEALS| passwdE 2S5 2o Al SLHH & A

52 9lo) L1912

12 e,

o RSAL} &2 public-key encryption scheme0i| 7|8tot digital
Al

signatureE AFZ 61 0™ 8HAIO| cracking0] J1s7?

» 2 SSLEl passwdE I U2 Evell JI2RIA AFEXRF AL
MU{0]| passwd 2tHE MBI} w2 AFENOI A, Evel}

(-
» L=,

MHE EIL}H ..
» 2L AU Zte|REJ} EvedtH..

x € L2 MEIGI| 22 A5 2 AL, AU 0]

El__l

AT 0 MB{2te| ZKP of proof of knowledge
MBS ets z0f [Hol- ()1[[1 MY T Ux| ©

» Aol x0f thet z= P&oby| 2SA8 (X,Z)% Rl

SsF /A O] «—
Mgt Q=

o AFZXIJL L € NPCE} certificate(proof) z2 72 A& o~ Q)
(L,
g

6 0>

[an}
13 FI
o

o
=]

0

Applications

oeo

Recall: Secure Multi-Party Computation for Dating for Shy People

@ encryption: f(x) = x mod n / dec.: f~1(y) = y? mod n J

Dating protocol based on RSA (for avoiding Alice’s shame)

O Alice creates e, d, n and publicize the public key (i.e. f(x)).

Q Alice sends Bob (f(x), f(y)) where x, y are:

» x="0"+random, y="0"4random if not interested in Bob
» x="“0"+random, y="1"4random if interested in Bob
» Both f(x) and f(y) look completely random to Bob.

© Bob picks a random r € Z,,. Then, he sends to Alice z:
» z=1f(x)-f(r) mod n = f(xr) if not interested in Alice
» z="f(y) - f(r) mod n = f(yr) if interested in Alice
@ Alice computes/sends f~1(z) = xr or yr mod n back to Bob.
» Either way, f ~1(z) looks completely random (by r) to Alice
© Bob computes w = f~(z)-r" ' mod n=xory.
» Bob not interested: w = x (Alice's interest not revealed)
> Bob interested: w = y (Alice’s interest revealed)

Applications

Multi-Party Secure Computation with ZKP

@ Alice/Bob0| 22| protocol2 S2!0| UHECHD JpA S Ul
Hol= et E defol, A2 7E00| ALte » US

> f: {“interested”, “uninterested” }> — {“date”, “rupture”} ;

f(x1,x) = “date” iff x; = xp = “interested"”

e 0|21 A8l2 “honest but curious” player@t 2tJ}5HCE
ot=dl, “malicious” player} &otet AL0=

?
MU 2 HLEER] 248 (5, cheating0| Jhse &

@ Malicious cheatingS 27| 2|oli A= 2 WO|X[2] protocol 2
2} stepOtCH CHS WA|OI CHSE ZKPE SAl B LIH &
“LIJF S U= msgl} protocol 201 2 0| =l 24} 2+

v
~
m
=
)
=2
2
o
0
o
3
el
c
g
t
g.
=
=2
N
X
O
rlr
0dt
02
K
=2

	Interactive Proof Systems
	IPS: Examples
	ZKP
	Commitment Schemes
	ZKP for NP
	Proofs of Knowledge
	Applications

