MC525: Cryptography #0: Discrete Probability Basics Informal Introduction for Cryptography

Sang-Hyun Yoon

Definition (Discrete Probability Space)

Let

- \bullet Ω : a finite set (e.g. C, $K \times \mathcal{M}$)
- $\rho:\Omega\rightarrow [0,1]$: a function satisfying $\sum_{\omega\in\Omega}\rho(\omega)=1.$

We say that

- \bullet (Ω , p) is a discrete probability space
	- \triangleright Ω is the sample space (or domain)
	- \blacktriangleright p is a probability distribution (확률분포) over Ω
- Each subset $A \subseteq \Omega$ is an event
	- **►** Each $ω ∈ Ω$ is an elementary event
- $p(A) \ \triangleq \ \sum_{\omega \in A} p(\omega)$ is the probability of an event A
- $p(\omega) = 1/|\Omega|$ (for each $\omega \in \Omega$) is the uniform distribution

Given a discrete probability space (Ω, p) , it is customary to use

- Pr_Q instead of the probability distribution p
- Pr_Ω[A] instead of $p(A)$
- Pr and Pr[A] when Ω is clear from the context

Discrete Probability Space: Example

Example (Rolling a Dice)

The corresponding probability space $(\Omega, \text{Pr}_{\Omega})$ is given by:

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pr Ω [ω] = 1/6 for each $\omega \in \Omega$

The following A, B are events of the probability space (Ω, Pr) :

\n- $$
A = \{2\} \ (\subseteq \Omega)
$$
\n- $B = \{\omega \in \Omega \mid \omega \text{ is even}\} \ (\subseteq \Omega)$
\n

Then,

$$
\bullet \ \mathsf{Pr}_\Omega[A] = 1/6
$$

• $Pr_{\Omega}[B] = 1/2$

암호학에서는 여러개의 probability space를 동시에 고려하므로 Pr $_{\Omega_1},$ Pr $_{\Omega_2}$ 와 같이 sample space를 표시해줘야 헷갈리지 않음

[Conditional Probability](#page-4-0) والمستخدم المستخدم المستخد

Let

- \bullet (K, M, C, Gen, Enc, Dec): a (private-key) encryption scheme.
- $Pr_{\mathcal{M}} \in \mathcal{P}_{\mathcal{M}}$: a probability distribution over \mathcal{M}
- $\Omega = K \times M$
- Pr_Ω : prob. dist. over Ω s.t. $\mathsf{Pr}_\Omega(k,x) = \Pr_{(\mathcal{K},\mathsf{Gen}())}(\mathcal{K},\mathcal{K})$

 $(K,\mathcal{M}, \mathcal{C}, \mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is said to be Shannon secret w.r.t. Pr $_{\mathcal{M}}$ if $\bullet \forall m \in \mathcal{M}, \forall c \in \mathcal{C}.$

> Pr $(\Omega,\mathsf{Pr}_\Omega)$ $[(k, x) \in \Omega | x = m] | { (k, x) \in \Omega | Enc(k, x) = c] }$ $=$ Pr $(\Omega,\mathsf{Pr}_\Omega)$ $\left[\{ (k, x) \in \Omega \mid x = m \} \right]$ $(= \Pr_{\mathcal{M}}(m))$

i.e. two events $\{(k, x) | x = m\}$ and $\{(k, x) | \text{Enc}(k, x) = c\}$ are independent

 $(K, \mathcal{M}, \mathcal{C}, \mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is said to be Shannon secret if • it is Shannon secret with respect to all $Pr_{\mathcal{M}} \in \mathcal{P}_{\mathcal{M}}$

Conditional Probability & Independence of Events

Fix a probability space (Ω, Pr) and events $A, B \subseteq \Omega$ with $Pr[B] \neq 0$

Definition (Conditional Probability)

The conditional probability of A given B, denoted $Pr[A|B]$, is

\n- Pr[A|B]
$$
\triangleq
$$
 $\frac{\Pr[A \cap B]}{\Pr[B]}$
\n- events *B7* } *Q0 Q1 Q2 Q3 Q5 Q7 Q7 Q8 Q7 Q9 Q1 Q1 Q1 Q2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q7 Q9 Q1 Q1 Q2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q7 Q8 Q7 Q7 Q7 Q8 Q7 Q9 Q1 Q1 Q2 Q3 Q5 Q7 Q7 Q8 Q7 Q7 Q7 Q8 Q7 Q7 Q7 Q8 Q7 Q7 Q7 Q7 Q7 Q8 Q7 Q7*

Definition (Independence of Events)

A and B are said to be independent if

• $Pr[A|B] = Pr[A]$ (equivalently, $Pr[A \cap B] = Pr[A] \cdot Pr[B]$)

Example (Rolling a Dice)

Let $A = \{2\}$ and $B = \{2, 4, 6\}$. Then,

• $Pr[A|B] = Pr[A \cap B] / Pr[B] = 1/3$ (A, B not independent) • $Pr[B|A] = Pr[A \cap B]/Pr[A] = 1/1 = 1$

Bayes' Theorem

Bayes' Theorem

Given pairwise disjoint events C_1, C_2, \ldots, C_n and a feasure set F,

$$
Pr(C_i|F) = \frac{Pr(F \cap C_i)}{Pr(F)} = \frac{Pr(F \cap C_i)}{\sum_{j=1}^n Pr(F \cap C_j)}
$$

=
$$
\frac{Pr(F|C_i)Pr(C_i)}{\sum_{j=1}^n Pr(F|C_j)Pr(C_j)}.
$$

o of much use when

- C_i = possible causes (e.g. diseases)
- \blacktriangleright F = observed result (e.g. symptom)
- **Example 2** cause-to-result relationship (e.g. $Pr(F|C_i)$) is well-understood

Terms in Bayesian community:

- Pr(C_i): a prior of C_i
- $Pr(C_i|F)$: a posterior of C_i given F

Bayesian Decision Problems

Uncertain Quantity & Prior Information

- $\bullet \theta \in \Theta$: uncertain quantity
- $\bullet \pi(\theta)$: prior information (given probabilistically)

Measurement

- $z \in \mathcal{Z}$: sample information & space
- $f(z|\theta)$: measurement model (given probabilistically)

$$
\pi(\theta|z) = \frac{\pi(\theta)f(z|\theta)}{m(z)} = \frac{\pi(\theta)f(z|\theta)}{\int_{\Theta} f(z|\theta)\pi(\theta)d\theta} \quad \left(\Pr(A|B) = \frac{\Pr(A)\Pr(B|A)}{\Pr(B)}\right)
$$

Decision Rule: Posterior Bayesian

A function $\delta : \mathcal{Z} \to \mathcal{A}$ $(\mathcal{A} = \Theta$ for estimation problems)

 $L(\theta, \delta(z))$: loss function $(L(\theta, \hat{\theta}(z)))$ for estimation prob.) $\delta(z) \triangleq \arg \min_{a \in \mathcal{A}} \int_{\Theta}$ $\mathcal{L}(\theta, a)\pi(\theta|z)d\theta = \arg\min_{a \in \mathcal{A}} \int_{\Theta}$ $\mathcal{L}(\theta, a)\pi(\theta)f(z|\theta)d\theta$

Outline

Random Variables

Definition (Random Variables)

Let (Ω, Pr) be a probability space and $X : (\Omega, \text{Pr}) \to \Omega'$. Then,

- \bullet X is called a random variable (RV) over (Ω , Pr)
- For $\omega'\in\Omega'$, $\mathsf{Pr}[X\!=\!\omega']$ denotes $\mathsf{Pr}_\Omega\left[\{\omega\in\Omega:X(\omega)\!=\!\omega'\}\right]$
- Distribution of X is func. $f_X : \Omega' \to [0,1]$; $f_X(\omega') = \Pr[X = \omega']$
- (Ω', f_X) 는 $(\Omega, \text{Pr}_\Omega)$ 로부터 X를 거쳐서 만들어진 새로운 probability space로 이해하면 됨
- Ω ⁰는 measurable space에 대해 고려하는데 대부분 R

Definition (Independence of Random Variables)

Two RVs $X, Y: \Omega \to \Omega'$ are said to be independent if

for each $\omega'_1, \omega'_2 \in \Omega'$, the events $X^{-1}(\omega'_1)$ and $Y^{-1}(\omega'_2)$ are independent (i.e. $Pr[X = \omega'_1, Y = \omega'_2] = Pr[X = \omega'_1] \cdot Pr[Y = \omega'_2]$)

Expectation & Variance

Definition (Expectation/Variance of a Random Variable)

Let $X : \Omega \to \mathbb{R}$ be a random variable over $(\Omega, \text{Pr}_{\Omega})$. We say that:

•
$$
\mathbb{E}[X] \triangleq \sum_{\omega \in \Omega} X(\omega) \Pr_{\Omega}[\omega] = \sum_{a \in \mathbb{R}} a \cdot \Pr[X = a]
$$
 is the expectation of X

 $\mathsf{Var}[X] \ \triangleq \ \mathbb{E}\left[(X\!-\!\mathbb{E}[X])^2\right] \ = \ \sum_{\omega \in \Omega} \mathsf{Pr}_\Omega[\omega]\big(X(\omega)\!-\!\mathbb{E}[X]\big)^2$ is the variance of X

Useful properties:

- $\bullet \mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n]$ (linearity of exp.) \triangleright X_1, \cdots, X_n 이 independent하지 않아도 성립됨에 유의
- $Pr[X > \lambda] < E[X]/\lambda$ for each $\lambda > 0$ (Markov inequality)
- $Pr [|X \mathbb{E}[X]| \geq \lambda] \leq Var[X]/\lambda^2$ (Chebyshev inequality)
- $\Pr[|(\sum X_i \mathbb{E}[X_i]) / n| > \lambda] < 2^{-\lambda^2 n/4}$ (Chernoff inequality)

이번 학기 수업에서는 별로 사용되지 않음

[Conditional Probability](#page-4-0) Conditional Probability Conditional Probability [Random Variables](#page-8-0)

Notational Conventions for Cryptography (매우 중요!!)

Given a finite sample space Ω,

$$
\bullet \ \mathcal{P}_\Omega \ \triangleq \ \{p:\Omega\rightarrow [0,1] \ | \ \textstyle\sum_{\omega\in \Omega} p(\omega)=1\}
$$

- \triangleright i.e. the set of all probability distributions over Ω
- \bullet U_O \triangleq the uniform probability distribution over Ω

$$
\blacktriangleright \text{ i.e. } U_\Omega(\omega) = 1/|\Omega| \text{ for all } \omega \in \Omega
$$

Enc는 probabilistic poly-time 알고리즘이므로 이것의 randomness 도 probability space에 반영해줘야 하는데..

- 예를 들어, $Pr_{\mathcal{K}, \mathsf{Gen}(1^n)}$ $\lceil {k \in \mathcal{K} | \mathsf{Enc}(k, m) ... } \rceil$ 에서 sample space는 K만 표시되어 있는데, Enc에서 사용되는 random number들의 sample space도 implicitly 포함된 것
- 즉, 위 표시는 다음을 줄여서 표현한 것으로 이해해야 함: $Pr_{\mathcal{K}\times\mathcal{R},\cdots}\big[\{(k,r)\in\mathcal{K}\times\mathcal{R}\,|\,\mathsf{Enc}(r,k,m) ...\}\big]$
- Enc의 randomness는 무조건 포함되므로 앞으로 Enc가 연루된 모든 확률 표현은 위와 같이 해석하도록