MC525: Cryptography#0: Discrete Probability BasicsInformal Introduction for Cryptography

Sang-Hyun Yoon

Definition (Discrete Probability Space)

Let

- Ω : a finite set (e.g. \mathcal{C} , $\mathcal{K} \times \mathcal{M}$)
- $p: \Omega \to [0,1]$: a function satisfying $\sum_{\omega \in \Omega} p(\omega) = 1$.

We say that

- (Ω, p) is a discrete probability space
 - $\triangleright \Omega$ is the sample space (or domain)
 - ▶ p is a probability distribution (확률분포) over Ω
- Each subset $A \subseteq \Omega$ is an event
 - ▶ Each $\omega \in \Omega$ is an elementary event
- $p(A) \triangleq \sum_{\omega \in A} p(\omega)$ is the probability of an event A
- $p(\omega) = 1/|\Omega|$ (for each $\omega \in \Omega$) is the uniform distribution

Given a discrete probability space (Ω, p) , it is customary to use

- Pro instead of the probability distribution p
- $Pr_0[A]$ instead of p(A)
- Pr and Pr[A] when Ω is clear from the context

Discrete Probability Space: Example

Example (Rolling a Dice)

The corresponding probability space (Ω, Pr_{Ω}) is given by:

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- ullet $\Pr_{\Omega}[\omega] = 1/6$ for each $\omega \in \Omega$

The following A, B are events of the probability space (Ω, Pr) :

- $A = \{2\} \subseteq \Omega$
- $B = \{\omega \in \Omega \mid \omega \text{ is even}\} \ (\subseteq \Omega)$

Then,

- $Pr_{\Omega}[A] = 1/6$
- $Pr_{\Omega}[B] = 1/2$

암호학에서는 여러개의 probability space를 동시에 고려하므로 $\Pr_{\Omega_1}, \Pr_{\Omega_2}$ 와 같이 sample space를 표시해줘야 헷갈리지 않음

Discrete Probability Space: Example from Cryptography

Let

- \bullet ($\mathcal{K}, \mathcal{M}, \mathcal{C}, \mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec}$): a (private-key) encryption scheme.
- $\Pr_{\mathcal{M}} \in \mathcal{P}_{\mathcal{M}}$: a probability distribution over \mathcal{M}
- $\Omega = \mathcal{K} \times \mathcal{M}$
- \Pr_{Ω} : prob. dist. over Ω s.t. $\Pr_{\Omega}(k,x) = \Pr_{(\mathcal{K},\mathsf{Gen}())}(k) \cdot \Pr_{\mathcal{M}}(x)$
- $(\mathcal{K},\mathcal{M},\mathcal{C},\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$ is said to be Shannon secret w.r.t. $\mathsf{Pr}_{\mathcal{M}}$ if
 - $\forall m \in \mathcal{M}, \forall c \in \mathcal{C},$

$$\Pr_{(\Omega, \Pr_{\Omega})} \left[\left\{ (k, x) \in \Omega \mid x = m \right\} \mid \left\{ (k, x) \in \Omega \mid \operatorname{Enc}(k, x) = c \right\} \right]$$

$$= \Pr_{(\Omega, \Pr_{\Omega})} \left[\left\{ (k, x) \in \Omega \mid x = m \right\} \right] \quad (= \Pr_{\mathcal{M}}(m))$$

- ▶ i.e. two events $\{(k,x) \mid x = m\}$ and $\{(k,x) \mid \text{Enc}(k,x) = c\}$ are independent
- $(\mathcal{K}, \mathcal{M}, \mathcal{C}, \mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is said to be Shannon secret if
 - it is Shannon secret with respect to all $Pr_{\mathcal{M}} \in \mathcal{P}_{\mathcal{M}}$

Outline

Conditional Probability

Random Variables

Conditional Probability & Independence of Events

Fix a probability space (Ω, Pr) and events $A, B \subseteq \Omega$ with $Pr[B] \neq 0$

Definition (Conditional Probability)

The conditional probability of A given B, denoted Pr[A|B], is

- $\Pr[A|B] \triangleq \frac{\Pr[A \cap B]}{\Pr[B]}$
 - ▶ events B가 일어난 상황하에서 A가 일어날 확률을 나타냄

Definition (Independence of Events)

A and B are said to be independent if

•
$$Pr[A|B] = Pr[A]$$
 (equivalently, $Pr[A \cap B] = Pr[A] \cdot Pr[B]$)

Example (Rolling a Dice)

Let $A = \{2\}$ and $B = \{2, 4, 6\}$. Then,

- $Pr[A|B] = Pr[A \cap B]/Pr[B] = 1/3$ (A, B not independent)
- $Pr[B|A] = Pr[A \cap B]/Pr[A] = 1/1 = 1$

Bayes' Theorem

Bayes' Theorem

Given pairwise disjoint events C_1, C_2, \ldots, C_n and a feasure set F,

$$Pr(C_i|F) = \frac{Pr(F \cap C_i)}{Pr(F)} = \frac{Pr(F \cap C_i)}{\sum_{j=1}^{n} Pr(F \cap C_j)}$$
$$= \frac{Pr(F|C_i) Pr(C_i)}{\sum_{j=1}^{n} Pr(F|C_j) Pr(C_j)}.$$

- of much use when
 - $ightharpoonup C_i = \text{possible causes (e.g. diseases)}$
 - F = observed result (e.g. symptom)
 - ▶ cause-to-result relationship (e.g. $Pr(F|C_i)$) is well-understood

Terms in Bayesian community:

- $Pr(C_i)$: a prior of C_i
- $Pr(C_i|F)$: a posterior of C_i given F

Bayesian Decision Problems

Uncertain Quantity & Prior Information

- $\theta \in \Theta$: uncertain quantity
- $\pi(\theta)$: prior information (given probabilistically)

Measurement

- $z \in \mathcal{Z}$: sample information & space
- $f(z|\theta)$: measurement model (given probabilistically)

Posterior Distribution

$$\frac{\pi(\theta|z)}{m(z)} = \frac{\pi(\theta)f(z|\theta)}{m(z)} = \frac{\pi(\theta)f(z|\theta)}{\int_{\Theta} f(z|\theta)\pi(\theta)d\theta} \quad \left(\Pr(A|B) = \frac{\Pr(A)\Pr(B|A)}{\Pr(B)}\right)$$

Decision Rule: Posterior Bayesian

A function $\delta: \mathcal{Z} \to \mathcal{A}$ ($\mathcal{A} = \Theta$ for estimation problems)

• $L(\theta, \delta(z))$: loss function $(L(\theta, \hat{\theta}(z)))$ for estimation prob.)

$$\delta(z) \triangleq \arg\min_{a \in \mathcal{A}} \int_{\Theta} L(\theta, a) \pi(\theta|z) d\theta = \arg\min_{a \in \mathcal{A}} \int_{\Theta} L(\theta, a) \pi(\theta) f(z|\theta) d\theta$$

Outline

Conditional Probability

2 Random Variables

Random Variables

Definition (Random Variables)

Let (Ω, Pr) be a probability space and $X : (\Omega, Pr) \to \Omega'$. Then,

- X is called a random variable (RV) over (Ω, Pr)
- For $\omega' \in \Omega'$, $\Pr[X = \omega']$ denotes $\Pr_{\Omega} [\{\omega \in \Omega : X(\omega) = \omega'\}]$
- Distribution of X is func. $f_X : \Omega' \to [0,1]; f_X(\omega') = \Pr[X = \omega']$
- (Ω', f_X) 는 (Ω, \Pr_{Ω}) 로부터 X를 거쳐서 만들어진 새로운 probability space로 이해하면 됨
- Ω'는 measurable space에 대해 고려하는데 대부분 ℝ

Definition (Independence of Random Variables)

Two RVs $X, Y : \Omega \to \Omega'$ are said to be independent if

• for each $\omega_1', \omega_2' \in \Omega'$, the events $X^{-1}(\omega_1')$ and $Y^{-1}(\omega_2')$ are independent (i.e. $\Pr[X = \omega_1', Y = \omega_2'] = \Pr[X = \omega_1'] \cdot \Pr[Y = \omega_2']$)

Expectation & Variance

Definition (Expectation/Variance of a Random Variable)

Let $X : \Omega \to \mathbb{R}$ be a random variable over (Ω, Pr_{Ω}) . We say that:

- $\mathbb{E}[X] \triangleq \sum_{\omega \in \Omega} X(\omega) \Pr_{\Omega}[\omega] = \sum_{a \in \mathbb{R}} a \cdot \Pr[X = a]$ is the expectation of X
- $Var[X] \triangleq \mathbb{E}\left[(X \mathbb{E}[X])^2\right] = \sum_{\omega \in \Omega} Pr_{\Omega}[\omega] (X(\omega) \mathbb{E}[X])^2$ is the variance of X

Useful properties:

- $\mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]$ (linearity of exp.)
 ▶ X_1, \dots, X_n 이 independent하지 않아도 성립됨에 유의
- $\Pr[X > \lambda] < \mathbb{E}[X]/\lambda$ for each $\lambda > 0$ (Markov inequality)
- $\Pr[|X \mathbb{E}[X]| \ge \lambda] \le Var[X]/\lambda^2$ (Chebyshev inequality)
- $\Pr[|(\sum X_i \mathbb{E}[X_i])/n| > \lambda] < 2^{-\lambda^2 n/4}$ (Chernoff inequality)

이번 학기 수업에서는 별로 사용되지 않음

Notational Conventions for Cryptography (매우 중요!!)

Given a finite sample space Ω ,

- $\mathcal{P}_{\Omega} \triangleq \{p: \Omega \to [0,1] \mid \sum_{\omega \in \Omega} p(\omega) = 1\}$
 - \blacktriangleright i.e. the set of all probability distributions over Ω
- $U_{\Omega} \triangleq$ the uniform probability distribution over Ω
 - i.e. $U_{\Omega}(\omega)=1/|\Omega|$ for all $\omega\in\Omega$

Enc는 probabilistic poly-time 알고리즘이므로 이것의 randomness 도 probability space에 반영해줘야 하는데..

- 예를 들어, $\Pr_{\mathcal{K},\mathsf{Gen}(1^n)} \big[\{ k \in \mathcal{K} | \mathsf{Enc}(k,m) ... \} \big]$ 에서 sample space는 \mathcal{K} 만 표시되어 있는데, Enc 에서 사용되는 random number들의 sample space도 $\mathsf{implicitly}$ 포함된 것
- 즉, 위 표시는 다음을 줄여서 표현한 것으로 이해해야 함: $\Pr_{\mathcal{K} \times \mathcal{R}, \dots} \left[\left\{ (k, r) \in \mathcal{K} \times \mathcal{R} \middle| \operatorname{Enc}(r, k, m) \dots \right\} \right]$
- Enc의 randomness는 무조건 포함되므로 앞으로 Enc가 연루된 모든 확률 표현은 위와 같이 해석하도록